Learn About AI

Complete guide to artificial intelligence terms, tools, and concepts. You'll find a degree's worth of education here—use it well!
Translator Prompt
Translator prompts are specialized instructions designed to guide artificial intelligence systems in performing translation tasks with specific requirements for accuracy, cultural sensitivity, and contextual appropriateness.
Learn more: 
How Translator Prompts Are Revolutionizing Global Communication
Unsupervised Learning
Unsupervised learning is a type of machine learning where the AI model is given a dataset without any explicit instructions or labeled examples, and it must find the underlying structure, patterns, and relationships on its own.
Learn more: 
Finding Patterns Without a Map Using Unsupervised Learning
User Prompts
User prompts are specific instructions, questions, or requests that individuals give to artificial intelligence systems to guide their responses or outputs. They serve as the primary interface for human-AI communication, determining both the content and quality of AI-generated results.
Learn more: 
User Prompts and the Art of Talking to Machines
Validation
AI validation is the process of determining whether an artificial intelligence system meets its intended purpose and performs correctly across a range of conditions and scenarios.
Learn more: 
The Validation Verdict: Ensuring AI Actually Works
Vector DB
A Vector DB is a specialized database designed to store and query embeddings, which are numerical representations of unstructured data like text, images, or audio. This allows AI systems to retrieve data based on meaning and relationships rather than exact matches.
Learn more: 
Vector DB: Unlocking Smarter, Contextual AI
Vector Store
A vector store is a specialized database designed to organize and retrieve feature vectors—numerical representations of data like text, images, or audio. These stores are essential in AI and machine learning workflows, enabling high-speed searches, efficient comparisons, and pattern recognition across vast datasets.
Learn more: 
Vector Stores Explained: The Data Engine Scaling Modern AI
Versioning
AI versioning is the systematic tracking and management of changes to artificial intelligence models, their code, data, and environments throughout their lifecycle. It creates a historical record that enables reproducibility, collaboration, and responsible deployment of AI systems.
Learn more: 
Keeping the Family Album: How AI Versioning Tracks Machine Evolution
Zero-Shot Prompting
Zero-shot prompting refers to the practice of guiding a language model to perform a task through a direct instruction without including any examples of the task in the prompt.
Learn more: 
Zero-Shot Prompting Explained: How to Guide AI Without Labeled Data
llama.cpp
llama.cpp is a fast, hackable, CPU-first framework that lets developers run LLaMA models on laptops, mobile devices, and even Raspberry Pi boards—with no need for PyTorch, CUDA, or the cloud.
Learn more: 
llama.cpp: The Lightweight Engine Behind Local LLMs
vLLM
vLLM is a purpose-built inference engine that excels at serving large language models (LLMs) at high speed and scale—especially in GPU-rich, high-concurrency environments.
Learn more: 
vLLM: The Fast Lane for Scalable, GPU-Efficient LLM Inference